Intestinal Crypt Homeostasis Results from Neutral Competition between Symmetrically Dividing Lgr5 Stem Cells

Hugo J. Snippert, Laurens G. van der Flier, Toshiro Sato, Johan H. van Es, Maaike van den Born, Carla Kroon-Veenboer, Nick Barker, Allon M. Klein, Jacco van Rheenen, Benjamin D. Simons, and Hans Clevers

INTRODUCTION

Although invertebrate stem cells and their niches can be studied with single-cell resolution, the size of mammalian tissues combined with the infrequent occurrence of stem cells have complicated the identification of individual stem cells in vivo (Morrison and Spradling, 2008). The small intestinal epithelium presents a unique opportunity to study mammalian adult stem cells. Not only is it the fastest self-renewing tissue in mammals, it also has a simple, highly stereotypical layout. It is essentially a two-dimensional (2D) structure: a sheet of cells, bent in space to form the crypts and villi. Cell compartments are easily identified by location along the crypt-villus axis. And, importantly, all cellular progeny remain associated with the stem cell compartment of origin. Stem cells reside at the crypt base and feed daughter cells into the TA compartment. TA cells undergo approximately 4–5 rounds of rapid cell division (Marshman et al., 2002); TA cells move out of the crypt and terminally differentiate into enterocytes, goblet cells, and enteroendocrine cells. These differentiated cells continue to move up the villus flanks to die upon reaching the villus tip after 2–3 more days. A fourth cell type, the Paneth cell, also derives from the stem cells but migrates downwards and settles at the crypt base to live for 6–8 weeks (van der Flier and Clevers, 2009).

Recently we reported that small cycling cells located between the Paneth cells, previously identified as crypt base columnar cells (Cheng and Leblond, 1974a, b), specifically express the Lgr5 gene (Barker et al., 2007). Using lineage tracing, we demonstrated that these Lgr5hi cells generate all cell types of the small intestinal epithelium throughout life. Similar data were obtained using a CD133-based lineage tracing strategy (Zhu et al., 2009). The Ascl2 transcription factor sets the fate of the Lgr5hi cells (van der Flier et al., 2009). As further proof of stemness, single Lgr5hi cells can generate ever-expanding epithelial organoids with all hallmarks of in vivo epithelial tissue (Sato et al., 2009). In the colon, stomach, and hair follicle, Lgr5hi cells have also been identified as stem cells (Barker et al., 2007, Barker et al., 2010; Jaks et al., 2008), whereas the Lgr6 gene marks a population of primitive skin stem cells (Snippert et al., 2010).

Previously it was postulated that a cycling, yet DNA label-retaining cell at position +4 represents a stem cell (Potten et al., 1974). Multiple markers were published for this cell (He et al., 2004, 2007; Potten et al., 2003). Using one of these markers, Bmi1, long-term lineage tracing was observed with kinetics that are surprisingly similar to that of Lgr5hi cells (San-giorgi and Capecchi, 2008). As sorted Lgr5hi cells express the highest levels of Bmi1 as assessed by qPCR analysis (Snippert et al., 2009; van der Flier et al., 2009), Lgr5 and Bmi1 may mark overlapping, if not identical, cell populations. Although a rare, quiescent “reserve” Lgr5neg population may exist (Li and Clevers, 2010), the Lgr5hi cells represent the workhorse of lifelong self-renewal of the healthy small intestine.

The most popular view on how stem cell populations accomplish homeostasis involves asymmetric cell division, which—at the single stem cell level—results in two cells with unequal fates: one new stem cell and one TA cell. This pattern of “invariant asymmetry” in cell division can be controlled by cell-intrinsic mechanisms best exemplified by the first division of the
C. elegans embryo (Cowan and Hyman, 2004) but also by extrinsic niche signals as shown for Drosophila germ stem cells (Fuller and Spradling, 2007). The asymmetric segregation of molecules coupled with strictly oriented mitotic spindles can herald an asymmetric fate outcome of the stem cell division, as shown for the C. elegans embryo and the Drosophila neuroblast (Neumuller and Knoblich, 2009). Only upon tissue expansion or damage will stem cells divide symmetrically in this model. We refer to mechanisms of stem cell maintenance that rely upon invariant asymmetry of division as belonging to the class of hierarchical models.

Another, less commonly considered model for homeostatic stem cell maintenance states that the two cells that are generated from a stem cell division do not necessarily display intrinsically divergent fates. Such a stem cell division can lead to any of three fate outcomes: two stem cells, one stem cell and one TA cell, or two TA cells. In order to maintain stem cell number in this model, homeostatic mechanisms have to act by necessity at the stem cell population level, ensuring that—on average—each stem cell division results in one stem cell and one TA cell. Stem cell-supported tissues that exhibit this pattern of regulatory control belong to the class of stochastic models. In contrast to hierarchical models, the clonal fate of individual stem cells in stochastic models is unpredictable.

Unlike most other mammalian tissues, the stem cells of the intestine are strictly compartmentalized in crypts. Winton and Ponder reported that the marking of individual stem cells results in entirely clonal crypts after 3 months and concluded that a single stem cell maintains each crypt (Winton and Ponder, 1990). Griffith et al. draw comparable conclusions for colonic crypts (Griffiths et al., 1988). In this view, crypt stem cell dynamics would represent an extreme version of the hierarchical model. Potten and Loeffler on the other hand proposed that crypts may harbor multiple stem cells that are not strictly dividing asymmetrically (Potten and Loeffler, 1990).

RESULTS

**Lgr5<sup>hi</sup> Cells Occur as a Homogeneous Population**

Lgr5<sup>hi</sup> stem cells in the small intestine divide approximately once per day (Barker et al., 2007). Quyn and colleagues have demonstrated that each Lgr5<sup>hi</sup> stem cell orient its mitotic spindle along its apical-basal axis (Quyn et al., 2010). In order to visualize crypt architecture at single-cell resolution, we generated an E-cadherin-mCFP fusion knock-in allele (Figures 1A and 1B and Figure S1 available online) and crossed this into the Lgr5-EGFP-Ires-CreERT2 KI mouse strain. E-cadherin-mCFP mice were homozygous viable. The E-cadherin fusion protein allowed visualization of 3D crypt architecture to depths of 125 μm.
structures (Sato et al., 2009). Recently, we noted that sorted Lgr5 intestinal stem cells could grow out into gut-like organoid heterotypic doublets (consisting of one Lgr5hi stem cell and one Paneth cell). We interpreted this to imply that the majority of Lgr5hi cells yield long-lived intestinal organoid structures in vitro (Sato et al., 2009). We next counted Lgr5hi intestinal stem cells in duodenal crypts of 14 Lgr5hi intestinal stem cells. Of these, 54 clones contained two Lgr5hi cells, 10 and 4D). We scored 101 two-cell clones for the presence of (A) Confocal section at the crypt base with Lgr5 cells (green) and Paneth cells, with large granules, stained for lysozyme (red). All cells at crypt bottoms are either Lgr5hi cells or Paneth cells. A Paneth cell is shown to the right. Insets: confirmation of sorting strategy by confocal microscopy; Lgr5hi in green and Paneth cell in red. Error bars represent standard deviation. Scale bars: 50 μm.

Figure 2. Lgr5hi Cells Constitute an Equipotent Stem Cell Population

Fluorescence-activated cell sorting (FACS) analysis demonstrated the existence of three different Lgr5-expressing populations based on GFP level (Figure 1D), of which only the GFPhi cells yield long-lived intestinal organoid structures in vitro (Sato et al., 2009). We next counted Lgr5hi intestinal stem cells in duodenal crypts of Lgr5-EGFP-Ires-CreERT2/E-cadherin-mCFP mice. In the 3D reconstruction model (Figure 1E), essentially all non-Paneth cells at the crypt base were Lgr5-GFP+. Conversely, no Lgr5-GFPhi cells were observed outside the crypt base. Crypts of the duodenum were found to contain 14 ± 2 Lgr5hi cells (Figure 1F), similar to the numbers of crypt base columnar cells as originally reported (Cheng and Leblond, 1974b).

In our initial in vitro experiments, less than 5% of single sorted Lgr5 intestinal stem cells could grow out into gut-like organoid structures (Sato et al., 2009). Recently, we noted that sorted heterotypic doublets (consisting of one Lgr5hi stem cell and one Paneth cell) displayed 25% plating efficiency (H.C. and T.S., unpublished data). After further optimization, we reached a plating efficiency of approximately 60% when scored as exponentially growing organoids after 7 days (Figure 2). In other words, more than half of Lgr5hi cells could grow out into an intestinal organoid when sorted together with a neighboring Paneth cell. We interpreted this to imply that the majority of Lgr5hi cells have stem cell properties, at least when associated with a Paneth cell. Thus, we tentatively viewed each duodenal crypt to harbor a homogeneous population of 14 Lgr5hi intestinal stem cells.

Multicolor Lineage Tracing of Individual Lgr5 Stem Cells

To address how homeostatic self-renewal is controlled, we generated a Cre-reporter allele termed R26R-Confetti. We integrated into the Rosa26 locus a construct consisting of the strong CAGG promoter, a LoxP-flanked Neo8-cassette serving as transcriptional roadblock, and the original Brainbow-2.1 cassette (Livet et al., 2007) (Figure 3A). After Cre-mediated recombination, the roadblock was removed and one of the four fluorescent marker proteins was stochastically placed under control of the CAGG promoter, allowing discrimination between the clonal progeny of neighboring stem cells within the same niche (Figure 3B). We validated fluorescent expression in multiple organs using the β-naphtaflavone (bNF)-inducible Ah-Cre allele (Ireland et al., 2004). Cre induction in small intestinal crypts occurs at high efficiency, whereas less efficient induction of the Cre transgene occurs in a variety of other organs. The R26R-Confetti allele behaved as a stochastic multicolor Cre-reporter generating nuclear green, cytoplasmic yellow, cytoplasmic red, or membrane-bound blue cells (Figure 3C). Whereas the other three colors consistently appeared in near-equal ratios, nuclear GFP cells occurred at varying frequencies, yet always lower than the expected 25%.

Short-Term Clonal Tracing Analysis of Individually Labeled Lgr5hi Cells

Crypts drift toward clonality over time (Griffiths et al., 1988; Winton and Ponder, 1990), yet the kinetics of this process have not been documented at the single stem cell level. In the first of two tracing strategies addressing this issue, we analyzed the behavior of clones developing from single Lgr5hi cells, stochastically initiated using the Lgr5-EGFP-Ires-CreERT2 allele in conjunction with the R26R-Confetti reporter. Analysis of stem cell clones was performed at various time points after Cre-induction by tamoxifen in 10-week-old mice, after which the progeny of these Lgr5hi cells were mapped in 3D-reconstructed crypts. Labeling occurred at a frequency of approximately one event per six crypts. All analyses were performed on crypts in the proximal segment of the duodenum.

Clones were scored for Lgr5hi cell content after a 7 day culture shows outgrowth of ~60% of Lgr5hi cells when paired with a Paneth cell. We interpreted this to imply that the majority of Lgr5hi cells yield long-lived intestinal organoid structures in vitro (Sato et al., 2009). We next counted Lgr5hi intestinal stem cells in duodenal crypts of 14 Lgr5hi intestinal stem cells. Of these, 54 clones contained two Lgr5hi cells, 10 and 4D). We scored 101 two-cell clones for the presence of Lgr5hi cells and Paneth cells (Figure 1E). Fluorescence-activated cell sorting (FACS) analysis demonstrated the existence of three different Lgr5-expressing populations based on GFP level (Figure 1D), of which only the GFPhi cells yield long-lived intestinal organoid structures in vitro (Sato et al., 2009). We next counted Lgr5hi intestinal stem cells in duodenal crypts of Lgr5-EGFP-Ires-CreERT2/E-cadherin-mCFP mice. In the 3D reconstruction model (Figure 1E), essentially all non-Paneth cells at the crypt base were Lgr5-GFP+. Conversely, no Lgr5-GFPhi cells were observed outside the crypt base. Crypts of the duodenum were found to contain 14 ± 2 Lgr5hi cells (Figure 1F), similar to the numbers of crypt base columnar cells as originally reported (Cheng and Leblond, 1974b).

In our initial in vitro experiments, less than 5% of single sorted Lgr5 intestinal stem cells could grow out into gut-like organoid structures (Sato et al., 2009). Recently, we noted that sorted heterotypic doublets (consisting of one Lgr5hi stem cell and one Paneth cell) displayed 25% plating efficiency (H.C. and T.S., unpublished data). After further optimization, we reached a plating efficiency of approximately 60% when scored as exponentially growing organoids after 7 days (Figure 2). In other words, more than half of Lgr5hi cells could grow out into an intestinal organoid when sorted together with a neighboring Paneth cell. We interpreted this to imply that the majority of Lgr5hi cells have stem cell properties, at least when associated with a Paneth cell. Thus, we tentatively viewed each duodenal crypt to harbor a homogeneous population of 14 Lgr5hi intestinal stem cells.

Multicolor Lineage Tracing of Individual Lgr5 Stem Cells

To address how homeostatic self-renewal is controlled, we generated a Cre-reporter allele termed R26R-Confetti. We integrated into the Rosa26 locus a construct consisting of the strong CAGG promoter, a LoxP-flanked Neo8-cassette serving as transcriptional roadblock, and the original Brainbow-2.1 cassette (Livet et al., 2007) (Figure 3A). After Cre-mediated recombination, the roadblock was removed and one of the four fluorescent marker proteins was stochastically placed under control of the CAGG promoter, allowing discrimination between the clonal progeny of neighboring stem cells within the same niche (Figure 3B). We validated fluorescent expression in multiple organs using the β-naphtaflavone (bNF)-inducible Ah-Cre allele (Ireland et al., 2004). Cre induction in small intestinal crypts occurs at high efficiency, whereas less efficient induction of the Cre transgene occurs in a variety of other organs. The R26R-Confetti allele behaved as a stochastic multicolor Cre-reporter generating nuclear green, cytoplasmic yellow, cytoplasmic red, or membrane-bound blue cells (Figure 3C). Whereas the other three colors consistently appeared in near-equal ratios, nuclear GFP cells occurred at varying frequencies, yet always lower than the expected 25%.

Short-Term Clonal Tracing Analysis of Individually Labeled Lgr5hi Cells

Crypts drift toward clonality over time (Griffiths et al., 1988; Winton and Ponder, 1990), yet the kinetics of this process have not been documented at the single stem cell level. In the first of two tracing strategies addressing this issue, we analyzed the behavior of clones developing from single Lgr5hi cells, stochastically initiated using the Lgr5-EGFP-Ires-CreERT2 allele in conjunction with the R26R-Confetti reporter. Analysis of stem cell clones was performed at various time points after Cre-induction by tamoxifen in 10-week-old mice, after which the progeny of these Lgr5hi cells were mapped in 3D-reconstructed crypts. Labeling occurred at a frequency of approximately one event per six crypts. All analyses were performed on crypts in the proximal segment of the duodenum.

Clone size was determined as the number of cells marked by a single fluorescent protein upon recombination of the R26R-Confetti allele. Cytoplasmic GFP intensity derived from the Lgr5 knock-in allele allowed the identification of Lgr5hi cells within a clone. Invariably, the identification of Lgr5hi cells by cytoplasmic GFP was confirmed by their location between Paneth cells. The first Confetti-marked stem cells were observed 24 hr after Cre induction (Figure 4A). Most clones consisted of a single cell, of which 90% (34/38) could be identified as an Lgr5hi cell located between Paneth cells (Figure 4B). Around 10% (5/43) of the marked stem cells had already undergone mitosis (Figure 4B).

After 2 days, most cells had divided at least once (Figures 4C and 4D). We scored 101 two-cell clones for the presence of Lgr5hi cells. Of these, 54 clones contained two Lgr5hi cells, 10 contained a single Lgr5hi cell, and 37 contained no Lgr5hi cells (Figure 4D). Alongside the 101 two-cell clones, there were a further 37 larger clones with mixed Lgr5 expression, including one seven-cell clone containing no Lgr5hi cells, and others with four cells all of which were Lgr5hi. Apart from an overall expansion of clone size, this general pattern of behavior (broad size distribution and divergent fates) was maintained at day 3 with the largest clone having as many as 10 cells (Figures 4E and 4F).
These results were indicative of the intestinal stem cells following seemingly divergent fates.

At later time points (day 7 and day 14), the rapid expansion and transfer of cells through the TA cell compartment to the villus made it challenging to reliably score their number. Therefore, we scored the number of Lgr5hi cells in each clone at days 1, 2, 3, 7, and 14, while disregarding all other cell types within the clone. Thus, a ten-cell clone comprised of four Lgr5hi cells and six Lgr5lo cells translates to a clone of size 4, while a ten-cell clone in which all cells are Lgr5lo was considered “extinct.” With this definition, the size distribution of surviving clones is shown over the 14 day chase period (Figure 4G). The data reveal a steady increase in the average clone size that compensates for the ongoing extinction of clones. Indeed, by day 14, the largest clone contained as many as 12 Lgr5hi cells, a figure approaching the 14 Lgr5hi cell average found in duodenal crypts.

It was apparent that, even in the largest surviving clones, the labeled Lgr5hi cells were largely grouped together suggesting that, despite their rapid turnover, mixing of cells at the crypt base was limited (Figure S2, Movie S1, and Movie S2). Furthermore, the morphology of these clones in the Lgr5hi compartment was consistent with a lateral expansion around the circumference of the crypt base, whereas few, if any, cell divisions lead to clonal expansion through the base to the opposite side of the crypt.

Long-Term Lineage Tracing

In the second strategy, we aimed to mark all stem cells in crypts to document the drift toward clonality. The Lgr5 gene is expressed at low levels and, as a consequence, the Lgr5-EGFP-Ires-CreERT2 allele does not generate quantitative Cre activation upon a single tamoxifen induction. We therefore used the R26R-Confetti allele in conjunction with the Ah-Cre allele. The Ah-Cre transgene recombines LoxP sites efficiently in most cell types including the stem cells yet is inactive in the long-lived Paneth cells (Ireland et al., 2004). Nevertheless, within the Paneth cell compartment, old unmarked Paneth cells are replaced by marked precursor cells over time (Ireland et al., 2005). Clonal analysis was performed at various time points after Cre activation in 10-week-old Ah-Cre/R26R-Confetti mice, using “side-view” and “bottom-view” imaging of whole-mount intestine (“xy plane” and “xz plane,” respectively; Figure 5A). Thus, the composition of many crypts could be captured in a single confocal image taken just above the crypt base, and for each crypt displayed as the biological equivalent of a “pie-chart.” Analysis of the crypts in the time course provided visual snapshots of individual labeled domains of cells within crypts (Figure 5B). Using these “bottom-view” images, we were able to extract quantitative data from week 1 to week 30, documenting the drift toward clonality (Figure 5B).

Although only a small fraction of cells acquired the nuclear GFP label, 80% of the remaining cells were induced in approximately equal proportions, yellow:blue:red. At the earliest time point taken at 4 days post-labeling, the confocal section at the crypt base showed a striking, heterogeneous pattern of labeling (Figure 5B). At day 7, there was a significant expansion and

---

**Figure 3. R26R-Confetti: a Stochastic Multicolor Cre-Reporter**

(A) R26R-Confetti knock-in strategy. Brainbow2.1 encoding four fluorescent proteins (Livet et al., 2007) was inserted into the Rosa26 locus. Upstream, the strong CAGG promoter, a LoxP site, and a neomycin resistance roadblock cassette were inserted.

(B) Upon cre activation, the neomycin roadblock is excised, while the brainbow2.1 recombines in a random fashion to four possible outcomes. GFP is nuclear, CFP is membrane associated, and the other two are cytoplasmic.

(C) The R26R-Confetti knock-in line is a stochastic multicolor Cre-reporter in multiple tissues. Scale bars: 50 μm, except for pancreas, kidney, and liver: 100 μm.
coarsening of the labeled domains reflecting stem cell loss and lateral expansion of neighboring clones (Figure 5B). At later time points, we observed a continuing expansion of the average domain size alongside an ever-diminishing number of domains until crypts became fully labeled with one color (monochromatic) or fully unlabeled (Figure 5B). The first monochromatic crypts appeared as early as 2 weeks post-induction, whereas around 75% had become fully labeled at 2 months (Figure 5B). Although the drift toward monoclonality continued, we noted the presence—albeit rare—of oligo-clonal crypts even at 18 and 30 weeks post-labeling (Figure 5B, circles).

To describe quantitatively the drift toward clonality, we converted the sections from the crypt base into a labeled domain-size distribution (Figure 6A). Specifically, we divided the circumference into 16 equal parts ("sextadecals"), reflecting the typical number of TA cells in a section near, but above, the crypt base (Potten and Loeffler, 1990). This assignment related proportionately to the stem cell content of a clone. For example, if we found a labeled domain of size 4 sextadecals—i.e., covering one quarter of the crypt circumference—this translated to one quarter of the crypt base stem cells being labeled in that color. In this way, we could determine the labeled domain size distribution (Figure 6B) as well as the frequency of monochromatic crypts (Figure 6C) over the 30 week chase period.

On day 7, the domain size distribution was tilted toward smaller clone sizes with a peak around 3 to 4 sextadecals, i.e., clones covering 3/16 to 4/16 of the circumference (Figure 6B). At 2 weeks, the weight of the distribution was gradually shifting toward larger clone sizes (Figure 6B), with a small fraction of crypts (ca. 5%) already fully labeled (Figure 6C). At 4 weeks, the average domain covered around 8 sextadecals, the half-filled crypt, in partially labeled crypts (Figure 6B), whereas about 45% had become monochromatic (Figure 6C). This trend continued out to the latest time point at 30 weeks when almost all crypts were monochromatic. This behavior was consistent with competition between neighboring stem cells leading to ever fewer yet larger clones and a steady progression toward monoclonality. This phenomenon was age independent, as we observed the same drift toward clonality, when lineage tracing was initiated in 40-week-old mice (Figure S3).

Taken together, the short- and long-term clonal fate data rule out a model in which all Lgr5hi cells are stem cells that segregate cell fate asymmetrically (Figures 4B, 4D, and 4F). Such a model would not be compatible with the previous observation—confirmed here—that crypts drift toward clonality (Griffiths et al., 1988; Winton et al., 1988). However, these early observations leave open the question of the functional homogeneity (i.e., equipotency) of the Lgr5hi population. Indeed, the divergence of...
clone fate seen in short-term lineage tracing and the progression to monoclonality at longer times could be both accommodated within two very different frameworks. In the hierarchical model (1), the Lgr5\(^{hi}\) cell compartment may be functionally heterogeneous with progenitor cells of limited proliferative potential supported by a single “dominant” stem cell following a strict pattern of invariant asymmetry such as proposed previously. Alternatively, in the stochastic model (2), tissue is maintained by an equivalent Lgr5\(^{hi}\) stem cell population following a pattern of population asymmetry in which stem cell loss is compensated by symmetric self-renewal of a neighboring stem cell.

At present, no marker or unique location has been identified that would distinguish a “dominant” Lgr5\(^{hi}\) stem cell in the hierarchical model from its Lgr5\(^{hi}\) progeny. Although, the validity of the model can thus not be addressed directly, several indirect conclusions can be drawn. First, for the model to be valid, the dominant stem cell has to be Lgr5\(^{hi}\), given that Lgr5-based tracing eventually leads to the marking of entire crypts. Second, the dominant stem cell has to divide in a strictly asymmetric fashion as a crypt can only harbor a single such cell. Third, because the kinetics of drift toward clonality differs from crypt to crypt, the dominant Lgr5\(^{hi}\) stem cell should yield Lgr5\(^{hi}\) progenitors, which can occur as relatively long-lived Lgr5\(^{hi}\) cells (which persist for many months) but should also occur as short-lived Lgr5\(^{hi}\) cells that disappear within days. Both long- and short-lived Lgr5\(^{hi}\) progenitors should still be multipotent, again based on our previous tracing data (Barker et al., 2007).

In the stochastic model the situation is much less complicated. Only one type of Lgr5\(^{hi}\) cell exists, 14 per crypt, all endowed with the potential for long-term stemness. Cell fate is determined after division of the Lgr5\(^{hi}\) stem cell, potentially by competition for available niche space at the crypt base. Thus, homeostasis is obtained by neutral competition between equal stem cells and occurs at the population level. To evaluate the possibility that the stochastic model indeed underlies the homeostatic self-renewal in crypts, we subjected our quantitative short- and long-term tracing data to a theoretical analysis.

Mathematical Analysis of Short-Term Clonal Evolution Shows that Stem Cells Follow Neutral Drift Dynamics

In general, the ability to maintain tissue in long-term homeostasis places significant constraints on the properties of a stem cell population. In particular, it leaves open two patterns of stem cell fate: invariant asymmetry in which every stem cell division results in asymmetric fate (as exemplified by the hierarchical model), and population asymmetry in which the balance between self-renewal and differentiation is achieved on a population basis (as exemplified by the stochastic model) (Watt and Hogan, 2000). For the latter, because the size of the intestinal stem cell compartment remains roughly constant over time, it follows that balance of stem cell fate in crypts must follow from external regulation: the tissue responds to the loss of a nearby stem cell by symmetric cell division or vice versa. As a result, stem cells follow a stochastic pattern of behavior known as “neutral drift dynamics.” If, by chance, the last stem cell in a clone is lost, that particular clone becomes extinct. As a consequence, crypts inevitably drift toward clonality in the stochastic model. Evidence for population asymmetry and neutral drift dynamics has been reported recently for stem cells in mammalian testis (Klein et al., 2010). Two of us (A.M.K. and B.D.S.) have provided the theoretical underpinning for a study comparable to that of Klein et al. on intestinal crypt-villus dynamics (Lopez-Garcia et al., 2010). Both of these studies relied upon long-term lineage tracing from which the “trails” of differentiating spermatocytes, and the migration streams of intestinal cells on the villi, were used to infer indirectly the dynamics of the underlying stem cell compartments.

With access to clonal fate data at single stem cell resolution, the present study allowed for a critical, direct analysis of the dynamics of the intestinal stem cell population. From the two
studies mentioned above, several generic and robust features of neutral drift dynamics have emerged. First, after an initial transient evolution, the clone size distribution was predicted to acquire “scaling” behavior: Formally, denoting as $P_n(t)$ the fraction of surviving clones which host $n$ (≥1) Lgr5hi cells at a time $t$ post-induction, we can define a cumulative size distribution, $C_n(t) = 1 - \sum_{m=1}^{n} P_m(t)$, i.e., $C_n(t)$ simply records the chance of finding a clone with more than $n$ stem cells after a time $t$. For the latter, “scaling” implies that the cumulative size distribution takes the form (Supplemental Information—Theory),

$$C_n(t) = F(n/(n(t)))$$

where $\langle n(t) \rangle$ denotes the average number of stem cells in a surviving clone, and $F$ is the “scaling function.” From (1), it follows that, when $C_n(t)$ is plotted against $n/\langle n(t) \rangle$, the entire family of size distributions at different times, $t$, collapses onto a single curve. The scaling function, $F$, is “universal,” independent of stem cell number and rate of loss or division, etc., and dependent only on the coordination of stem cells in tissue (see below). In crypts, because clone size cannot grow indefinitely, scaling behavior will be lost when crypts become monochromatic (Supplemental Information—Theory).

By contrast, if homeostasis relies upon a stem cell hierarchy, clones derived from the dominant stem cell would increase steadily in size, whereas those derived from shorter-lived Lgr5hi cells would exhibit limited growth followed by loss. Significantly, the mixture of these two behaviors cannot lead to scaling (Klein et al., 2010). The growth, $\langle n(t) \rangle$, and form of $F$, offer further insight into the pattern of stem cell fate. If stem cells are organized into a one-dimensional arrangement, with cell replacement effected by neighboring stem cells, then the average size of surviving clones is predicted to acquire a square root time dependence, $\langle n(t) \rangle = \sqrt{\lambda t}$, with $\lambda$ as the stem cell replacement rate, and the scaling function taking the form (Supplemental Information—Theory; Bramson and Griffeath, 1980),

$$F(x) = \exp\left(-\frac{\pi x^2}{4}\right).$$

Referring to Figures 7A and 7B, we indeed found that the cumulative clone size distribution from the short-term clonal assay showed a rapid convergence onto scaling behavior, whereas the average clone size followed a square root growth over the same period. Such scaling behavior is consistent with equipotency of all Lgr5hi cells, thereby arguing against the hierarchical model. Furthermore, the coincidence of the data with the universal (parameter-free) scaling function (2) further established that intestinal stem cells follow a pattern of neutral drift dynamics in which stem cell multiplication is compensated by the loss of neighboring stem cells. This leads to a lateral clonal expansion around the one-dimensional circumference defined by the crypt base (Figure 6A) and consistent with the images obtained from whole mounts (Figure 5B). A fit of the predicted average clone size $\langle n(t) \rangle$ (Figure 7A, solid line, Supplemental Information—Theory) to the experimental data over the 14 day chase period (Figure 7A, points) revealed a stem cell replacement rate of $0.74 \pm 0.04$/day, a figure comparable with the cell division rate of the stem cells. As a result of this coincidence, we can conclude that, if asymmetric stem cell divisions take place at all, they make a minimal contribution to tissue homeostasis.

From the inferred rate of stem cell loss, we can use neutral drift dynamics to predict the long-term evolution of the average clone size and survival probability (Figures 7C and 7D). With this result in hand, a further comparison of the clone size distribution with a more detailed analysis that includes the approach to scaling (Supplemental Information—Theory) revealed an
excellent agreement of theory (Figure 7B, lines) with experiment at intermediate times (Figure 7B, points).

**Long-Term Clonal Evolution, Coarsening, and the Progression to Monoclonality**

The long-term lineage tracing data provided a vivid demonstration of the “coarsening” phenomenon (i.e., the drift toward ever fewer, yet larger clones) predicted by neutral drift dynamics. It also presented an opportunity to study quantitatively the progression to monoclonality. The size distribution of contiguous labeled patches of stem cells generated in the R26R-Confetti system provided a signature of neutral drift dynamics, which can be compared to theory—a straightforward generalization of the clonal dynamics considered in the previous section to a multicolor mosaic system. Although the clone dynamics relates to an, as yet, unsolved problem in nonequilibrium statistical physics—the theory of a “coalescing random walk” (Ben-Naim et al., 1996; Krapivsky and Ben-Naim, 1997; Wu, 1982)—the evolution could be generated straightforwardly by computer simulation, and the results compared with experiment (Figure S4 and Supplemental Information—Theory). To extract quantitative insights from the experimental data, we required one further parameter, the number of stem cells in the crypt. Duodenal crypts harbor $14 \pm 2$ Lgr5$^{hi}$ cells per crypt. In the following, we have assumed a figure of 16 stem cells per crypt, and an average stem cell loss rate of 0.74/day, the line shows the prediction following neutral drift dynamics (Supplemental Information—Theory) while the points are obtained from experiment at 4, 7, 14, 28, 61, 126, and 210 days post-induction.

(Figures 6B and 6C). The corresponding frequency of monochromatic crypts (in which all progenitor cells are labeled with the same color) is shown in the inset. Error bars denote the standard error of the proportion.

(F) Variability in clone size for partially labeled crypts at 4, 7, 14, and 28 days post-induction. The predictions made by neutral drift dynamics (lines, Supplemental Information—Theory) match closely with the experimental data (points, Figure 6B). Error bars denote the standard error of the proportion. See also Figure S4.
monochromatic crypt fraction (Figure 7E, inset). In particular, the figure shows that, by 2 months, approximately 75% of the crypts became monoclonal (Figure 7A, inset).

As with the short-term clonal assay, the average size dependence represented just one facet of a rich data set associated with the full clone size distribution. With the same two parameters in hand, the stem cell loss rate and stem cell number, an analysis of the size distribution showed an equally favorable agreement (solid lines) with the experimental data (points) at 4, 7, 14, and 28 days post-labeling (Figure 7F). At longer times, the data were fully consistent with theory, but the numbers of nonclonal crypts had become too low to reach statistical significance.

DISCUSSION

We have studied how homeostasis of intestinal stem cell compartments is accomplished by following the fates of clonally labeled Lgr5<sup>hi</sup> cells. Although we cannot rigorously rule out the hierarchical model (as long as the model allows unlimited complexity in the cellular composition of individual crypts), our data favor the stochastic model based on the following arguments: The stochastic model is the simplest model, as it postulates the existence of only a single type of Lgr5<sup>hi</sup> cell. The model endows every Lgr5<sup>hi</sup> cell with potential stemness, which agrees with our observations that the majority of Lgr5<sup>hi</sup> cells can establish long-lived intestinal organoids. By contrast, the hierarchical model would endow only 1 of 14 Lgr5<sup>hi</sup> cells with stemness. And importantly, the stochastic model is in excellent agreement with both the early-tracing data (Figure 4) and the drift-toward-clonality data (Figure 6).

It has recently been reported that Lgr5<sup>hi</sup> cells orient their spindle along the apico-basal axis (Quyn et al., 2010). This may herald the generation of unequal daughter cells because, after division, the individual daughters may find themselves in different environments. This occurs in the Drosophila testis, where the germ stem cell divides perpendicular to a niche structure, termed the hub. This ensures that one cell will continue as a stem cell attached to the hub, while the other differentiates into a gonial blast (Yamashita et al., 2003). Similarly, germ stem cells and escort stem cells in the Drosophila ovary divide away from the niche cells of the ovary, the cap cells (Deng and Lin, 1997).

Such an orientation ensures the generation of the downstream daughter (the prospective cystoblast) and the generation of a new cap cell-associated stem cell (Fuller and Spradling, 2007). All Lgr5<sup>hi</sup> cells span the epithelial sheet, from basal lamina to apical lumen. Their flanks uniformly touch Paneth cells. Thus, even though the spindle is oriented perpendicular to the epithelial sheet, the daughter cells do not end up in divergent locations. We propose that spindle orientation in Lgr5<sup>hi</sup> cells results from spatial constraints in these flattened polarized cells.

A stochastic model involving neutral competition (for instance for niche space) between equal stem cells and leading to neutral drift dynamics may be operative in other mammalian tissues. Indeed, the stochastic model generates features of homeostatic self-renewal that, without detailed scrutiny, would appear to be exponents of the hierarchical model. For instance, the drift-toward-clonality intuitively implies the "predetermined" presence of a single long-lived stem cell, the central characteristic of the hierarchical model. Yet, our quantitative analysis shows that it is also the inevitable outcome of the stochastic model. Further, intuitively the wide diversity in life span of progenitors would be indicative of the existence of a variety of long-lived and short-lived progenitors, another feature of the hierarchical model. Yet, the stochastic model of equal stem cells inevitably generates a similar richness in life span.

For at least two cases, the long-lived keratinocyte progenitor in the basal layer of the epidermis (Clayton et al., 2007) and the germline stem cells in mammalian testis (Klein et al., 2010), it has been shown that stochastic outcome of the division of a single type of potentially long-lived progenitor maintains tissue homeostasis. In both cases, only a single type of differentiated cell is generated and one may therefore argue that the epidermis and testis don’t represent examples of multipotent stem cell-driven self-renewal. Although technically challenging, it would be of great interest to perform clonal tracing in “classic” stem cell models such as the bone marrow. More examples may be unveiled in which homeostasis is obtained at the population level by competition between equal stem cells, rather than at the single stem cell level by strictly asymmetric cell divisions.

EXPERIMENTAL PROCEDURES

Mice

E-cadherin-mCFP mice were generated using the construct in Figure 1A. The neomycin selection cassette was excised in vivo by crossing the mice with the PGK-Cre mouse strain. For E-cadherin-mCFP genotyping PCR primers, see Table S1. E-cadherin-mCFP mice were bred with Lgr5-EGFP-Ires-CreERT2 mice. Double heterozygous mice of 10 weeks were used for experiments. R26R-Confetti mice were generated using the construct in Figure 3A. For the brainbow 2.1 construct, refer to Livet et al. (2007). See Table S1 for the R26R-Confetti genotyping PCR primers. R26R-Confetti mice were crossed with Lgr5-EGFP-Ires-CreERT2 or with Ah-Cre mice. Cre induction: 10-week-old mice were injected with 5 mg tamoxifen (single injection) or β-naphtoflavone (3× 100 mg in one day), respectively.

Tissue Preparation for Confocal Analysis

For semi-thick sectioning of near-native tissue, organs were fixed in 4% paraformaldehyde at room temperature for 20 min and washed in cold PBS. 1 cm<sup>2</sup> of intestinal wall was put in a mold. Four percent low melting point agarose (40°C) was added and allowed to cool on ice. Once solid, a vibrating microtome (HM650, Microm) was used to make semi-thick sections (150 μm) (velocity: 1 mm/s, frequency: 65 Hz, amplitude: 0.9 mm). Sections were directly embedded in Vectashield (Vector Laboratories).

FACS Analysis of Lgr5 Populations and In Vitro Culture

Lgr5<sup>+</sup> cells were FACS analyzed as previously described (van der Flier et al., 2009). Crypts were dissociated with TrypLE express (Invitrogen) with 2000 U/ml DNase (Sigma) for 30 min at 37°C. Dissociated cells were passed through 20 μm cell strainer (Celltrix) and washed with PBS. Cells were stained with CD24-PE antibody (eBioscience) and Epcam-APC antibody (eBioscience) for 15 min at 4°C and analyzed by MoFlo (DakoCytomation). Viable epithelial single-cells or doublets were gated by forward scatter, side scatter and pulse-width parameter, and negative staining for propidium iodide. Sorted cells were embedded in Matrigel. Crypt culture medium (advanced DMEM/F12 supplemented with Penicillin/Streptomycin, 10 mM HEPES, Glutamax, 1x N2, 1x B27 [Invitrogen], and 1 μM N-acetylcysteine [Sigma] containing 50 ng/ml EGF, 100 ng/ml noggin, 1 μg/ml R-spondin) was overlaid. Y-27632 (10 μM) was included for the first 2 days to avoid anokias. Growth factors were added every other day and the entire medium was changed every 4 days.
independent experiments, organoid formation was analyzed 7 days after plating.

**Microscope Equipment**

Images were acquired using a Leica Sp5 AOBS confocal microscope (Man-
heim, Germany) equipped with the following lenses: 10 x (HCX PL APO CS NA0.40) dry objective; 20 x (HCX PL FLUOTAR L NA0.40) dry objective; 40 x (HCX PL APO NA0.85) dry objective; and a 63 x (HCX PL APO NA1.30) glycerol objective.

**SUPPLEMENTAL INFORMATION**

Supplemental Information includes Extended Experimental Procedures, four figures, one table, and two movies and can be found with this article online at doi:10.1016/j.cell.2010.09.016.

**ACKNOWLEDGMENTS**

We thank Stieneke van den Brink, Jeroen Korning, and the Hubrecht Imaging Center for technical assistance. We thank J. Lichtman for the Brainbow2.1 cassette. A.M.K. and B.D.S. acknowledge insightful discussions with Douglas Winton and Carlos Lopez-Garcia.

Received: July 15, 2010
Revised: September 7, 2010
Accepted: September 10, 2010
Published: September 30, 2010

**REFERENCES**


Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327, 1385–1389.


Supplemental Information

EXTENDED EXPERIMENTAL PROCEDURES

Microscope Settings and Image Analysis

Figure 1B
(image 512 × 512 pixels, 8 bits, 63x, air 1.5). In a semi-thick section of near native fixed intestine, mCFP was excited using a 458 nm laser and collected between 465–600 nm.

Figure 1C, Left Panel
(XYZ stack 512 × 512 pixels, 8 bits, 63 steps, 2 μm stepsize, 63x). In a whole-mount of near native fixed intestine, fluorescence was excited using a 2-photon laser at 880 nm. mCFP was collected using external/ non-descanned detector with 480/30 nm bandwidth and 505 nm longpass filter. EGFP was collected using external/ non-descanned detector with 530/50 nm bandwidth and the same 505 nm LP filter. 3D representation was created using Volocity (Improvision Ltd.).

Figure 1C, Right Panel
(XYZ stack 1024 × 1024 pixels, 12 bits, 32 steps, 1.5 μm stepsize, 63x). In a semi-thick section of near native fixed intestine, fluorescence was excited using a 2-photon laser with settings as in Figure 1C, left panel.

Figure 1E
(XYZ stack 1024 × 1024, 12 bits, 37 steps, 2.5 μm stepsize, 63x). In a whole-mount of near native fixed intestine, fluorescence was excited using a 2-photon laser with settings as in Figure 1C, left panel.

Figure 3 and Figure 5
Images of at least 1024 × 1024 pixels and 12 bits were acquired with one of the three dry lenses. xy-plane images were created by scanning semi-thick sections of near native fixed intestine. Scans were performed in series for XFP excitations. nuclearGFP, the argon laser 488 nm line; for EYFP 514 nm line; for RFP a red diode laser emitting at 561 nm, and blue mCFP was excited using a laserline at 458 nm. In general GFP fluorescence was collected between ~498–510 nm, airy 1; EYFP fluorescence was collected between ~521–560 nm, airy 1; RFP fluorescence was collected between ~590–650 nm, airy 1; mCFP fluorescence was collected between ~466–495 nm, airy 1.5. DIC was obtained while using 488 nm laser through transmission gate. The acquired images were processed with Image J and photoshop.

Quantitative Data Analysis—Counting Lgr5hi Cells
Three-dimensional representations were created using Volocity (Improvision Ltd.). Four separate XYZ stacks per mouse were scanned per part of small intestine (duodenum, jejunum and ileum). Using Image J, average Lgr5-GFPhi signals were calculated from at least 10 Lgr5-GFP positive cells at the entire base of crypts per XYZ stack. Threshold was set at 66% of this particular stack average. GFP signals above this threshold were visualized in red. RGB overlays showed Lgr5-GFP in green, mCFP in white and GFP signals above threshold in red. The numbers of Lgr5hi cells per crypt (each cell with regions above threshold) were counted in Z-stacks, and multiple counts of the same cell in different slices were avoided by marking cells in each plane with a custom Image J plug-in.

Average number of Lgr5hi cells per crypt was calculated over more than 75 counted crypts out of 8 different Z-stacks per intestinal part obtained from 2 mice at 10 weeks of age. Same holds true for standard deviation.

Quantitative Data Analysis—Short-Term Tracing of Lgr5hi Cells
The acquired images were processed with Image J and photoshop or Volocity. Lgr5 driven EGFP was separated from Confetti nuclearGFP based on cellular localization. Lgr5hi threshold was defined as described above. Numbers of Lgr5hi cells per crypt were counted as well as number of cells belonging to one clone (all positive for one of the Confetti colors). In addition, of each cell within a clone its relative crypt position was scored (located at the entire crypt base, around +4 or >+4) and whether it belonged to the Lgr5hi population or not.

Quantitative Data Analysis—Long-Term Tracing of Intestinal Stem Cells
xz-plane images, obtained from wholemount intestine, were processed in Image J and photoshop. Analysis of the clone and labeled domain size distributions were conducted using simulations based on Fortran codes and XMGRACE. Theoretical analysis of the one-dimensional neutral drift model is described in supplemental theory.
Theory
Neutral Drift Model of Intestinal Stem Cell Maintenance

The quantitative analysis of the lineage tracing data relies upon a model of intestinal stem cell fate involving “neutral drift dynamics,” which was proposed to describe intestinal stem cell turnover in (Lopez-Garcia et al., 2010). The aim of the following supplementary sections is to elaborate on how the model is inspired by the current clonal fate data, and to elucidate the key elements of the theoretical and data analysis.

Whole-mount thick sections of tissue show the crypt base to be characterised by Paneth cells intercalated by narrower Lgr5hi progenitor cells. From the short-term clonal labeling study several important features emerge: Characterizing clone size by their Lgr5hi cell content, the distribution of “surviving” clones (i.e., clones that host at least one Lgr5hi cell) reveals an ongoing expansion of the average clone size compensated by depletion in surviving clone density (Figure 4). At the same time, the increasing width of the surviving clone size distribution suggests that Lgr5hi cells adopt seemingly “random” divergent fates (Figure 4G). Taken together, such behavior is consistent with maintenance of the Lgr5hi cell population following a pattern of population asymmetry.

A second and important feature of the clonal evolution is the cohesion of labeled Lgr5hi cells at the crypt base (Figure S2 and Movie S1 and Movie S2). Moreover, clones tend to expand laterally around the circumference of the crypt base while very few clones, if any, involve cells migrating through the apex of the crypt base. Finally, taking into account the close association of Lgr5 expression with Paneth cell contact (Figure 1E and Figure 2A), we are led to consider a “quasi one-dimensional arrangement” of Lgr5hi stem cells, which follow the perimeter of the crypt base (Figure 6A). Stem cell loss following displacement from the niche Paneth cells is compensated by the multiplication of neighboring stem cells, and vice versa, leading to the conservation of stem cell number (Figure 6A).

On this background, let us now consider the clonal evolution of a single labeled stem cell. Following this pattern of niche-based competition, if stem cell multiplication leads to the displacement of the labeled stem cell, the clone is lost. Conversely, if the labeled stem cell undergoes division, it may displace a neighboring unlabelled cell leading to clonal expansion (see Figure 6A, last three panels). In subsequent generations, the clone may again expand or contract depending on whether labeled cells at the boundary of the clone are lost or multiply. However, it is important to recognize that clonal growth and contraction, following this pattern of external regulation, can only occur at the boundary of the labeled clone. The loss and replacement of stem cells within a labeled fragment leave the clone size unchanged. As a result, clonally labeled domains of cells follow a pattern of neutral drift in which the boundary of the clone follows a “random walk.” Clonal progression is arrested when the last cell in a clone is lost (leading to clonal extinction) or when the last cell in the crypt becomes labeled (leading to monoclonality and fixation of the clone).

Such behavior is encountered in a broad class of problems where it is known variously as the “stepping stone model” in population genetics (Kimura, 1983), a “moran process” in population dynamics (Moran, 1962) and a “Voter model” in physics and mathematics (Bramson and Griffeath, 1980; Liggett, 1985; Korolev et al., 2010). As a paradigmatic model, the general class of Voter models have been the subject of considerable attention, with studies in both the mathematics and physics literature (Ben-Naim et al., 1996). Indeed, for a general system following Voter model dynamics, it has been established that clonal evolution is characterised by long-term scaling behavior in which the clone size distribution acquires the scaling form (1) discussed in the main text. In the one-dimensional arrangement, pertinent to the present system, the development of the long-term scaling behavior and the drift toward monoclonality can be developed in full from technical but straightforward mathematical analysis. In the following, we will reproduce the principal findings that relate to the analysis presented in the main text leaving a more detailed discussion to the literature (Lopez-Garcia et al., 2010).

Formally, the clone size distribution can be obtained from the Master equation,

\[
\frac{1}{t} \frac{d}{dt} \rho_n(t) = \Delta \rho_n(t) - (\delta_{n,1} + \delta_{n,-1} - 2\delta_{n,0}) \rho_n(t) - (\delta_{n,N_{stem}} + \delta_{n,N_{stem}-1} - 2\delta_{n,N_{stem}}) \rho_{N_{stem}}(t) + \delta_{n,1} \delta(t),
\]

where \(\rho_n(t)\) denotes the probability of finding a clone with \(n\) labeled stem cells (including \(n = 0\)) at a time \(t\) following induction, \(\lambda\) denotes the stem cell replacement rate, and \(N_{stem}\) denotes the total number of stem cells (labeled and unlabelled) in the crypt. Defining the one-dimensional lattice translation operator, \(E_m = e^{i\pi k}\) with \(\tilde{k}m - m\tilde{k} = 1\), \(\Delta = \tilde{E} + \tilde{E}^{-1} - 2\) denotes the lattice Laplacian. \(\delta_{m,n}\) denotes the Kronecker delta symbol taking the value of unity when \(m = n\) and zero otherwise, while \(\delta(t)\) denotes the Dirac delta function being non-zero only at \(t = 0\) and integrating to unity. The first term on the right hand side of the equation describes a “random walk” of the clone size associated with the ongoing loss and expansion of labeled stem cells at the clone boundary, the second term accommodates the extinction of a clone due to the loss of the last stem cell, while the third term is associated with the fixation of a clone when all the cells in a crypt become fully labeled. Finally, the last term encodes the initial condition, translating to one labeled stem cell per crypt.

By constructing the Green function associated with the lattice Laplacian (Ben-Naim et al., 1996), and employing the method of images, one may show that the Master equation has the general time-dependent solution,

\[
\rho_n(t) = \frac{2}{N_{stem}} \sum_{m=-1}^{N_{stem}-1} \sin\left(\frac{\pi m}{N_{stem}}\right) \sin\left(\frac{\pi mn}{N_{stem}}\right) \exp\left[-4\lambda t \sin^2\left(\frac{\pi m}{2N_{stem}}\right)\right], \quad 1 \leq n \leq N_{stem} - 1,
\]

while the monoclonal fraction is given by,
Specifically, we induced cells at a labeling frequency of 4 in 5, with each color, yellow, blue, and red, drawn with equal probability, the multicolor system in full straightforwardly from numerical simulation. More challenging, and unsolved theoretical problem, beyond the scope of the current work. However, we can infer the dynamics of evolution of clone sizes will differ quantitatively in its characteristics, the qualitative features are maintained: coarsening of the clone system is characterised by an initially heterogeneous distribution of labeled clone sizes in which neighboring cells of the same color of the nuclear GFP in the densely labeled system is negligible and can be safely ignored. Therefore, on induction, the densely labeled surviving clone size distribution acquires the scaling form,

$$P_n(t) = \frac{1}{\langle n(t) \rangle} \frac{1}{\rho_0(t)} = \sqrt{\frac{\pi}{4\lambda t}},$$

where \( \langle n(t) \rangle \) denotes the average size of surviving clones. From the expression for \( P_n(t) \), it follows that the cumulative clone size distribution acquires the scaling form, \( C_n(t) = F(n/\langle n(t) \rangle) \), utilized in the main text.

In the opposite limit, \( \lambda t \gg N_{stem}^2 \), the majority of crypts have become fully clonal, In this limit, the clone size distribution, \( p_n(t) \), is dominated by the lowest term in the sum. Here we find that,

$$P_n(t) = \frac{A(t)}{\cot(\pi/2N_{stem})} \sin(\pi n/N_{stem}), \quad 1 \leq n \leq N_{stem} - 1$$

while \( P_{N_{stem}}(t) = 1 - A(t) \) with

$$A(t) = 4\cos^2(\pi/2N_{stem}) \exp\left[-4\lambda t \sin^2\left(\frac{\pi}{2N_{stem}}\right)\right].$$

The sinusoidal form of \( P_n(t) \) of the partially labeled crypt at long times reflects the persistence of clones which are nearly half-filled. Clones that are close to extinction or saturation are precarious, easily arrested by loss or fixation. Conversely, clones that cover half of a crypt can afford to drift without risk of loss.

**Statistics of Clonal Evolution in the Densely Labeled Confetti Mouse System**

Having described the clonal evolution of single labeled cells, in the following section, we will consider the more challenging problem of the multicolor Confetti mouse system. As in the main text, to develop intuition, it is helpful to consider a fictitious “Confetti”-mouse system in which each and every cell in a crypt is labeled by a different color. Intuitively, it is easy to see that the progression to monoclony will lead to a coarsening phenomenon in which the gradual extinction of labeled clones is compensated by the expansion of others—neutral competition. It is also clear that the statistics of the ensemble of individual clonal patches is equivalent to the problem described in the previous section. It is curious to note that the joint statistics of the multiple color system represents a largely unsolved problem in non-equilibrium statistical physics – the problem of “coalescing random walkers” (Krapivsky and Ben-Naim, 1997).

In reality, the Confetti mouse system is essentially limited to just four colors, yellow, blue, red and “unlabeled.” (The induction rate of the nuclear GFP in the densely labeled system is negligible and can be safely ignored). Therefore, on induction, the densely labeled system is characterised by an initially heterogeneous distribution of labeled clone sizes in which neighboring cells of the same color appear by chance. Moreover, distinct clones of the same color can appear several times in a single clone. Nevertheless, although the evolution of clone sizes will differ quantitatively in its characteristics, the qualitative features are maintained: coarsening of the clone size distribution leading to monochromaticity of the crypt. Needless to say, the statistics of the coarsening process represent a yet more challenging, and unsolved theoretical problem, beyond the scope of the current work. However, we can infer the dynamics of the multicolor system in full straightforwardly from numerical simulation.

For completeness we simply note here that, to explore the clone size evolution described in the main text, we followed the dynamics of randomly induced crypt segments following the pattern of neutral dynamics described in the previous section. More specifically, we induced cells at a labeling frequency of 4 in 5, with each color, yellow, blue, and red, drawn with equal probability,
matching that found in the experimental system. Here, for the reasons outlined in the main text, we took a stem cell number of \( N_{\text{stem}} = 16 \). To develop the numerical simulation, we chose to update randomly chosen cells by exchanging their color by one of their neighbors reflecting the outcome of stem cell loss following multiplication.

With 1,000,000 crypts monitored in the simulation, the relevant clonal distributions were fully converged allowing comparison with the results of the long-term lineage tracing experiment. The results of the comparison are described in the main text.

**SUPPLEMENTAL REFERENCES**


Figure S1. E-cadherin-mCFP KI Fusion Protein Maintains Endogenous Expression Pattern and Cellular Localization, Related to Figure 1

(A) E-cadherin-mCFP KI strategy. mCFP was targeted at the endogenous STOP codon of Cdh1, thereby maintaining expression levels and pattern.

(B) Southern blot of targeted ES cells confirms proper integration into Cdh1 locus.

(C) Expression pattern and cellular localization of E-cadherin-mCFP recapitulated the endogenous situation. Left panel; E-cadherin-mCFP (false color white). Middle panel; bright field. Right panel; overlay (mCFP in false color blue).
Figure S2. Clonal Evolution of Labeled Lgr5hi Cells at the Crypt Base Remain Cohesive, Related to Figure 4

Bottom-view image of 7 day tracing of Lgr5-EGFP-Ires-CreERT2/ R26R-Confetti confirmed that clones tend to expand laterally around the perimeter of the crypt base while very few clones, if any, involve cells migrating through the apex of the crypt base. Lgr5-GFP is in green, Confetti colors in corresponding colors.
Figure S3. At Old Age, Neutral Drift Dynamics Remain Operative, Related to Figure 5
Neutral drift dynamics underlies intestinal self-renewal at all times. Even in mice of 40 weeks old, crypts drift toward clonality with the same broad time distribution. Scale bars: 100 μm.
Figure S4. Computer-Generated R26R-Confetti Tracing according to Neutral Drift Dynamics, Related to Figure 7
Numerical simulation illustrating neutral drift dynamics for eight crypts where the cells have been induced with an 80% probability after which any of the three colors (red:yellow:blue) can appear with equal probability. The on-going expansion, contraction, and loss of labeled patches results in a “coarsening” phenomenon leading to monoclonality of crypts at longer times.